Inhibition of Vibrio harveyi bioluminescence by cerulenin: in vivo evidence for covalent modification of the reductase enzyme involved in aldehyde synthesis.
نویسندگان
چکیده
Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with [3H]myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. In contrast, in vitro acylation of both the synthetase and transferase subunits, as well as the activities of luciferase, transferase, and aldehyde dehydrogenase, were not adversely affected by cerulenin. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10 micrograms/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from [14C]acetate, whereas uptake and incorporation of exogenous [14C]myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with [3H]tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with [3H]tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which [3H]myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.
منابع مشابه
Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi.
Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into pho...
متن کاملControl of aldehyde synthesis in the luminous bacterium Beneckea harveyi.
Some of the Beneckea harveyi dim aldehyde mutants, all of which emit light upon addition of exogenous long-chain aldehyde, also emit light when myristic acid is added. Analysis of these myristic acid-responsive mutants indicates that they are blocked before fatty acid formation, whereas another class of mutants, which respond only to aldehyde, appear to be defective in the enzyme(s) involved in...
متن کاملExpression of bioluminescence by Escherichia coli containing recombinant Vibrio harveyi DNA.
When isogenic strains of Escherichia coli, RR1 (rec+) and HB101 (recA), were transformed with mapped recombinant plasmids known to contain Vibrio harveyi luciferase genes and large regions of DNA flanking on both sides, a small percentage (0.005%) of the colonies expressed high levels of luminescence (up to 10(12) quanta s-1 ml-1) in the absence of added aldehyde. The altered ability to express...
متن کاملBiological screening of a diverse set of AI-2 analogues in Vibrio harveyi suggests that receptors which are involved in synergistic agonism of AI-2 and analogues are promiscuous.
C1-alkyl AI-2 analogues do not induce bioluminescence in V. harveyi on their own but enhance the bioluminescence induced by AI-2 in a synergistic fashion. A new facile synthesis of AI-2 facilitates the synthesis of a diverse set of AI-2 analogues and biological screening suggests that receptors that are involved in the synergistic bioluminescence production in V. harveyi are promiscuous.
متن کاملBacterial bioluminescence in vivo: control and synthesis of aldehyde factor in temperature-conditional luminescence mutants.
Bioluminescent marine bacteria possess luciferase, which catalyzes the oxidation of reduced flavin mononucleotide and long-chain aldehyde to produce light. Temperature-sensitive mutants of these bacteria can be obtained which require exogenous aldehyde for light production at higher temperatures. In Beneckea harveyi. two classes of such mutants were found which differed with regard to their res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 171 7 شماره
صفحات -
تاریخ انتشار 1989